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Introduction

Exact solutions of LLG,

dm v
n—=—= X Heg —
dt 1—|—a2m T

satisfy |m| = 1.

Cartesian numerical solvers allow |m| # 1.
Renormalization required to put solvers back on track.

Different renormalization techniques influence results.




Example: Single Spin Undamped Precession
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Renormalization Artifiacts

e Traditional (naive) renormalization
— Keep direction
— Reset magnitude to 1.

— Nearest point on sphere.
e Produces error inm - H.g.

e Therefore, error in energy, dissipation rates, etc.




Single Spin, Euler Integration
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e Damping a = 0 = m (= -energy) should be constant.
(rk2 is second order Runge-Kutta, others are 1st order Euler.)




Single Spin, Runge-Kutta Integration
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e Similar (but smaller) errors. Time step = 10 ps.
(rk4 = 4th order; rkf54 = 5 + 4th order Runge-Kutta-Fehlberg.)




Micromagnetic Example: Instabilities
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Thickness =2 nm
Py material parameters Damping a = 0.001
Simulation cellsize = 2nm




Renormalization Induced Instability
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e rkf54 method, variable stepsize.




Revised Example: Modified Normalization
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Revised Example: Modified Normalization

e Modified renormalization
— Adjust both direction and magnitude.
— Nearest point on “orbit of precession”.

— Generalized orbit: Nearest point on intersection of sphere and
plane through unnormalized value perpendicular to 11 x 1o .

— Generalized orbit accounts for non-zero damping and for depen-
dence of H.g on m.

e Greatly reduced errors.




Modified Normalization, Single Spin
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e Revised normalization improves all integration techniques.
(Data points are subsampled.)




Modified Normalization, Stability
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e Revised normalization greatly reduces instability.
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Revised Equation

ay

S x Heg x m o+ u(m] = DV (m) (2)

mXHeff_

u(-) 1s scalar weighting function, output from PID controller. Initially,

u(0) = 0.

V'(m) is vector in same direction as modified normalization.

Exact solutions of (2) are same as exact solutions of (1).

Correction term in the equation itself has advantages:

— More direct use by solvers with automatic step size control

— Multi-step solvers do not require resets at normalization points.




Modified LLG, Stability
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e No instability with modified LLG.

e Also fixes single spin precession (not shown).
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Summary

e Cartesian solvers employ renormalization when solving LLG.

e Simple renormalization choice introduces artifacts.
— Energy calculation errors compared with analytical solution.

— Numerical instabilities in more complex problems.

e Modified renormalization techniques yield improved results
— Normalization to “orbit of precession”

— Modified equation that self-corrects to normalized values.




